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Using the method of dua! series, solutions are obtained to some problems on the torsion,
by means of a circular punch, of a half-space with a spherical inclusion.

The cases of arigid spherical inclusion and of a spherical cavity are studied. In both
instances, the problem 'is firat reduced to the associated Legendre polynomials and then to
& Fredholm integral equation. The effective solution to the problem is obtained by a series
expansion in terms of  small parameter which relates the radius of the cavity to the dis-
tance from its center to the half-space boundary.

The relations between the angle of twist of the punch and the applied torsional moment
are found.

1. Consider a half~space which is attached to a rigid punch and to a fixed spherical
inclusion, and which is subjected to a torque M applied via the punch. If we assume that
the angle of twist of the punch is @, then the stress~deformation state is defined by the
function v (r, 5) satisfying the differential Eq.

Av —rp=2¢ (z > 0) 1.1
and the boundary cenditions

v
vis—-_:'ﬁr, 'aT S'=0’ vlz=0 (12)‘

Here S and 5! are respectively, the region under the
punch and the region exterior to the punch on the plane
z = 0 while X is the surface of the aphere.

In seeking a solution, it is convenient to introduce the
bispherical coordinate system (a, 3, &) defined by For-
mulas {Fig, 1)

asinacos @
chf—cosa °*
asinasing ashf
Y=ChPp—cosa ' ““chP—cosa
OKB<SP 0SS, — AP

Then separation of variables in (1.1) and application

r=

(1.3)

Fig. 1 of the lns;condition in {1.2) yields
v(e,B)= V2V BB—cosa Y| Aysh(n+1s)(Bo— B) Pyl (cosa)  (1.4)
Rewriting the remaining boundary cogdi’:;:l in (1.2) in the form
”Is-o=01—a_'s—;%§; (@ <a<m) (1.5
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|
3B |o—o = 0 O<a<a) (1.8)
we obtain the following dual series Egs.(*):
oo
3 Ansh(n ) BoPyl cosay = — 0L cagm (1)
1 T VIid—cosa™”
(=4
D) (nYa) Anch(n 4+ 1) Bo Py (cosa) =0 (0 < &< %) (1.8)
n=1
Set .
Apch(n 4 13) By = S @ (¢) sin(n - Y/z) L dt (1.9)
Then (1.8) is satisfied as a result of the relations {11
P (x)z-—w—-p—— P,(\), A=cosa (1.10)
1
Zcos (n—}-—.z) tP, (cosa)==0, t>a (1.11)
n=»0

The second of the dual series relations {1.7) may be transformed with the aid of Formu~
las [12]

0 , t<lua
sin tP, (cosa) .
Z ( ) (cos { [2(cosa—cos ], 1> (1.12)

i
sin (n 4+ 5}z
Py, (cosa)= *.‘22-2‘5——1“__;—_—2)—- dzx {1.13)
J Vcosa— cosz

into the form

d g dz { 2 g : _fa
A J Y cosa—cosz — 12— ao@( YIn(t—z)—n(t+2)] dt} —a—ans 19
ST __cos (n 1)
u) = cos(n -+14)u
! Zgaxp 2 (n + Vo) Bl 51 (115)
Integrating (1.14) with respect to A, we obtain Abel's integral Eq.

n n
[ S X A S SN
‘Vm P n)‘?{ ¢ n( 1 ”'_V—i-:——— +¢o (1.16)
The solution of this equat:on may be reduced, after some manipulation, to a Fredholm
integral equation in ¢ (x)
k1

2
P@—\ e mu—2)—n(+a)di=

co - T 2 i
x—;vzsm—z"‘?‘-ﬂﬂm (a0 <z < M) (147

The constant ¢q in the right-hand side of the equation is determined from the supplemen=

*) Dual series of the functions P™, {cos Q) for the cases of m = 0 and m = 1 are examined
in detail in [1 to 6], The case of arbitrary m is examined in [7 to 10}.
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tary integrability condition of Au/Af3 for 3= 0 in the region ay < a < (This condition is
equivalent to the requirement that the applied torque on the punch be finite). We now utilize
(1.9) to (1.11) and Formula

o
2 cos (n -+ 1/5) tP, (cosa) = ! R t<a (1.18)
— {V2(cost—cosa)
The Fxpression
-qh[." - o0
B f3=o ViV T—cosa E An (n +12) ch (n 4 1) BoPyl (cosa)  (1.19)
Fi
is reduced to the form
x
o N d 1 dy g
e wm — 1 — cos [ | e —— -S “——“___._.‘——'_.:“] .
3B [a=0 Vi—cosa|g(x) da Y cosdg— cos o TH Y cost—cos a (.20

[ 73
In order that the above mentioned condition be satisfied, it is clearly necessary to set
in (1,20}
P (%) =0 (1.21)
This is the condition for the determination of cg.
Now the moment M is easily found:

b
v or . * oo
MmO\ Gy oy do =206 \ 5| _ s (1:22)
s 0

Here G is the shear modulus and b is the radius of the punch.
From (1.20) and (1.21} we have

a
av 1—cosa dv 1 s, & @ (1) at
i = e = o— (] — /8 e \ e
0z L=9 a I8 [smmp o t—cosa)® gy \ Veost— cosa

Ko

so that
”

- 4
. . sin®a d {/ @ (t)dt
M = 2nGa® - — ( e )d
E}o(i—cosa)/* ax ;\ ¥cost—cos a ?

Integrating by parts and inverting the order of integration, we obtain the relation between
the moment M and the angle of twist &

(1.23)

..’S @ ()
M=M&“§Fm§m (1.24)

Thus, the solution of the problem has been reduced to & Fredholm integral Eq. (1.17)
which generally has to be solved by numerical methods. Here, there is an additional diffi-
culty, since the kernel does not appear in explicit form. Nevertheless, for suitably small
values of the ratio p /I, the method of successive approximations can be effectively applied.

As a preliminary step, expand the kernel in (1.17) in a power series & = exp (~ By

Nt—2)—nmit+2)=2[e— e+ e —...)sinYytsin,z+ (1.25)
4 (3=t .. .)sin¥ytsind, x4 (e8—e0 4 .. .)siné/ytsindyz+ .. )

The relations between the quantities @ g and 3 and the geometric parameters are given
by

! 1l cth Bo
;zChBD’ &—b_ - ctgll':%

To conform with the above, let us also expand ¢ (x) and ¢q into similar series. Then
{1.17) takes the form
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4
%(z)+q>1(r)e+<pa(x)82+“-=',75 [P'(D) +Pa(t) e+ P2 (t) €2+ ... ] X

o
. Lt = L3t | 3=
x[(e—eﬂ—i—a‘—...)sm?sm 5+(e’—e'+...)sm—2-smT+(a5—el°+---)><

% ain B 5z }d Vi, = o, 2va 1
31n—2—-sm—2-+... t+T Sln2(0m+6018+¢‘038 4. )= e s—_—inl/ga:(t‘%)

Equating coefficients of like powers of the parameter, we obtain for the zeroeth approxi~

mation B 20_a ( sinlfs z 1
Pol@) =" (sini/; ag)®  sinY/, z) (1.27)
E 16
" t
M, = 2nGa? (si'ﬁ"f(/”)l)a— di =7 GOb® (1.28)
Xn

Formula (1.28) coincides with the known expression for the torsional moment in the
case of a continuous half-space.
Successive approximations yield

QL(2) =@, (2) =0, @,(2) = 160an-?(sine, — n -+ a,) sin /g z (cos z — cos a,) (1.29)
Consequently, the first correction to the moment ¥ is of third order of smallness, so
that we have, with a good degree of accuracy
M =18/, GO (1 + A), A=12 e3n~1 (tg Y, o) (sinay — 7 + otp)? (1.30)

Values of the correction A for some values of p /I and b/l are given below.

o/ 1=0.6 0.7 0.8
A =0.012 0.031 0.082  (b/l=1/3)
A =0.02T 0.059 0.133  (b/l =1/)
A = 0.048 0.085 0.147 (bl =1)

The quantity 1+ A characterizes the magnification of the moment M associated with the
effect of a rigid, stationary inclusion.

Note that the proposed method could also be used in the solution of a more general prob-
lem in which torsional moments M and M are applied to both, the punch and the inclusion.
Whereupon, two angles of rotation ¥ and §‘ for the punch and the inclusion, respectively,
must be introduced, so that the last condition in (1.2) is no longer homogeneous. Upon cal-
culation of the moments M and M’, we obtain a system of equations with the two unknowns
9 and ¥’. The case examined above corresponds to #’= 0, so that calculations of ¥ " may
be based on the solution previously obtained.

2. We will now obtain the solution for the twisting by means of a round punch of a half-
space with a spherical cavity whose surface is stress-free.

Instead of utilizing the stress function ® which is generally used in problems of this
type and which satisfies Eq. {13]

4 00D
AP ——+ 55 =0 2.1)
it is convenient in this case to introduce another function w(r, z) defined as
D= rw (2.2)
It is easily verified that w satisfies Eq.
Aw — 4r-2w =0 (2.3)

and, consequently, may be represented in bispherical coordinates by the series

w= VY2V chpB—cosa 2 [ Ay sh (7 +1/2) (Bo — B) 4 By sh (n + Y/2) B] Pp? (cos a)  (2.4)

n==
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Employing known relations from torsion theory [13], the boundary conditions for w(a, )
become

low/ Blgo =10 oo <a < (2.5)
W|gay =C (1 —cosa)?|a?sin?a 0o <<ay) (2.6)
w fﬁ-ﬁ. =0 t<<agn 2.7

Formulating the expression for the moment due to the loading on a hemisphere of arbi-
trary radius with the center at the origin, we can obtain the following relation between C
and the torsional moment M:

C=—1Y;M/|nG (2.8)

The condition (2.7) yields B,, = 0, Whereupon (2.5) and (2.6) lead to a system of dual
series in 4 :

C (1—cosa)’”

2 Ap8h (n - 12) BoPp? (co8 ) = 7-2: i 0<a<a) 29

n==
oo
St Ay (0 4 12) oh (4 1) BoPy? (c0590) =0 (a0 <@ <) (2.10)
ne=nl

By setting «
1 * 1
Agpch (ne}-?)&:Sq:(t) €08 (n+~2—) tdt 2.11)

0

and taking into account the relation
42
PlrM=(1—24Y T P, (A}, A=cosa (2.12)

as well as (1.12), (2.10) is identically satisfied. Taking note of (2.12), (1.11) and (1.18),
and employing the integral representation

_lf?_§ cos(rt Yz

P, (cosa) = ——— e
n( % J Veosz—cosa

(2.13)
k4]

(2.9) is transformed into the form

[ L]
d ¢ dz 2 1 — )
mém{@(ﬂ—;é P n (t+x)+n(i—~x)]dt}=ca—s('(r:)xi)‘a (2.14)

Here, the function 7 is defined, as before, by (1.15).
Integrating (2.14) twice with respect to A, we obtain Abel’s integral Eq.
[ ]

LT
- d 2
| Vimrmes PO w ) s0me s ne=alaf= o
0

3. VZ—Vi—1 Vi+a

Vi c [ sy—r . 3 ___L+__.]
== Vzv‘“’“+2’“V§+VTSX‘+M"V§—VC7~ +eabte

Solving the preceding equation, we obtain, as in Section 1, a Fredholm integral equation
for ¢ (x)
2 ¢
P — 7 ) oM G +2) +ne—=)d=
0
2 x 2 z
%sin‘%——‘-{}cg(i-—Zcmz)cos—i +l;—-c,cos-2- (2.16)

The constants ¢, and ¢, in (2.16) are obtained from the supplementary integrability con=
dition for 9y /05 in the region z = 0, exterior to the punch (i is the displacement function

Nah.
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Note that this requirement represents the condition that the angle of twist of the punch

& be finite.
Utilizing the relation between ¢ and &:

_9_1’2_ - 1 0@ i1 4 N
35 o = T e ) (2.47)
we conclude that
N (L) @ a
35 |a=y ( rh )s:o B leo (k ~chB—cosa ) (218)

Here 4 is the Lamé coefficient.
Taking into account (2.4}, (2.11), (2.12) and (1.12), we obtain after some manipulation

%o
aw — fa2 ? () Q20T
— = e — in? - 2.19
B |B=0 Vi—cosasin®a d (cos a)? [V 08 & — COS tg § VY cosu— cost (219)
so that we must have
G (o) =0 (2.20)
Further, integrating (2.19) by parts, we obtain
ow [E——— d2 — e o)
38 lpmo = V1 — cos asm*ad——-——(cos M [2 V Cosa— cos aoq;h(l %
o
- s z) .
— 2 l\ (S’STEIT—): V cosa — cos ¢ dt] (2.24)
-
From which it follows that:
9 (@) =0 (2.22)

Thus, (2.20) and (2.22) serve to determine ¢, and ¢,, whence the formula for N /s
takes the form
L
ap 2 ) e 0T e
T oo = (t —cosa)”tsina ms [%-L Vcosa—cos tdt  (2.23)
a
From {2.23), the relation between the angle of twist © and the moment M is easily ob-
tained. Indeed, integrating (2.23) in the region 8=0,0<a < 0.5 and taking into account
the fact that 1 -+ 0 at infinity, we obtain

b
é '?9,_\5 s=49 (2.24)
Substituting (2.23) into (2.24), we obtain after some manipulation
o=—%—g~  (0) (2.25)

The guantity ¢ (0) is proportional to the moment M, so that (2.25) is the desired relation.

To obtain an effective solution to this problem in a manner similar to that of Section 1,
we expand the functions 77 and ¢ and the constants ¢, and ¢, in power series of & = ePo,
Matching coefficients of like powers of  in (2.16), we obtain for the zeroeth approximation

V2

n
Upon determining ¢;4 and ¢4 from (2.20) and (2.22), we obtain the first relation in (1.28),

which corresponds to the case of a halfespace without a cavity. Additional computations

yield
Pr(z) =0, k=1-4 2.27)

so that the correction to the moment in this case is of fifth order of smallness.
The approximate formula for the moment M takes the form

cC ..« 2
Po (2) = 52 sin? T (1 —2cosx) cos—z- e+ -}-f,-t—— cos -g— C20 (2.26)
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~ 84 2
M~Mo(1—-A), A:e’.;‘-s‘n5-—2-—c08’% (2~28)
The coefficient 1 — A indicates the decrease in the moment required in order to obtain
an angle of twist ¢ for the half-space, taking into account the effect of a spherical cavity
with a stress-free surface,
Values of A for certain values p /l and b/! are given below,

o/l == 0.8 0.7 0.8

A=0.003 | 0.012 | 0.038 (b/l="1)
A=0.005 | 0.016 | 0.041 (bi="1})
A=0.003 | 0.008 | 0.084 (d/l=1)

In conclusion, we note that the dual series method is also applicable to the case in
which shearing stresses are applied to the cavity surface,
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